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Abstract 
 

 

COMPARING BOOTSTRAP AND JACKKNIFE VARIANCE ESTIMATION 
METHODS FOR AREA UNDER THE ROC CURVE USING ONE-STAGE CLUSTER 
SURVEY DATA 

By Allison M. Dunning M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2009 

Major Director: Christine Schubert,  Assistant Professor Department of Biostatistics 

 

The purpose of this research is to examine the bootstrap and jackknife as methods for 

estimating the variance of the AUC from a study using a complex sampling design and to 

determine which characteristics of the sampling design effects this estimation.   

Data from a one-stage cluster sampling design of 10 clusters was examined.  Factors 

included three true AUCs (.60, .75, and .90), three prevalence levels (50/50, 70/30, 

90/10) (non-disease/disease), and finally three number of clusters sampled (2, 5, or 7).  A 

simulated sample was constructed for each of the 27 combinations of AUC, prevalence 

and number of clusters.  
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Estimates of the AUC obtained from both the bootstrap and jackknife methods 

provide unbiased estimates for the AUC. In general it was found that bootstrap variance 

estimation methods provided smaller variance estimates.  For both the bootstrap and 

jackknife variance estimates, the rarer the disease in the population the higher the 

variance estimate.  As the true area increased the variance estimate decreased for both the 

bootstrap and jackknife methods.  For both the bootstrap and jackknife variance 

estimates, as number of clusters sampled increased the variance decreased, however the 

trend for the jackknife may be effected by outliers.  

The National Health and Nutrition Examination Survey (NHANES) conducted by the 

CDC is a complex survey which implements the use of the one-stage cluster sampling 

design.  A subset of the 2001-2002 NHANES data was created looking only at adult 

women.  A separate logistic regression analysis was conducted to determine if exposure 

to certain furans in the environment have an effect on abnormal levels of four hormones 

(FSH, LH, TSH, and T4) in women.  

Bootstrap and jackknife variance estimation techniques were applied to estimate the 

AUC and variances for the four logistic regressions.  The AUC estimates provided by 

both the bootstrap and jackknife methods were similar, with the exception of LH.  Unlike 

in the simulated study, the jackknife variance estimation method provided consistently 
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smaller variance estimates than bootstrap.  AUC estimates for all four hormones 

suggested that exposure to furans effects abnormal levels of hormones more than 

expected by chance.   

The bootstrap variance estimation technique provided better variance estimates for 

AUC when sampling many clusters.  When only sampling a few clusters or as in the 

NHANES study where the entire population was treated as a single cluster, the jackknife 

variance estimation method provides smaller variance estimates for the AUC.
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1. Introduction 
1.1 Motivation and Purpose 

Survey samples are becoming an increasingly popular method to obtain information.  

With the introduction of the internet and in particular email, there is virtually no limit to 

the number of people who can now be reached.  Everyday millions of inboxes are filled 

with requests to fill out an online survey.  In conjunction with this growing technology 

and improving ability to reach people, statistically valid surveys are also being developed 

and the ability to administer these surveys is monumentally easier than in years past; thus 

the popularity of these surveys is also increasing.   

 Such surveys often implement the use of complex sampling designs.  For 

example, the Centers for Disease Control (CDC) conduct the National Health and 

Nutrition Examination Survey (NHANES), which uses a one-stage cluster sampling 

approach.  Obtaining estimates, and in particular their variances, requires special 

considerations.  For example, if one wishes to perform a logistic regression analysis on 

data collected from NHANES, one estimate that can be used to summarize this analysis is 

the area under the receiver operator characteristic (ROC) curve.  Such an estimate must 

incorporate appropriate adjustments specific to the sampling design.  Special techniques 

exist to estimate these values as well as their variances.  Two popular techniques are the 

bootstrap and jackknife variance estimation methods.  These two techniques are part of a 

larger group known as replication methods. 
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 The purpose of this research is to use these replication methods to create estimates 

for the variances of area under the ROC curve (AUC) obtained from data collected using 

one-stage cluster sampling designs.  In particular, this research will focus on comparing 

the bootstrap and jackknife variance estimation methods.  It will be of interest to 

determine if certain factors related to the sample and the sampling design affect these 

variance estimates.  In addition to the calculation of the AUC for data obtained from 

NHANES, data will be simulated so as to test the effect of three factors related to the 

sample and sampling design on the variance estimates from both methods.  The three 

factors to be tested are true AUC, prevalence of disease, and number of clusters sampled.  

A comparison of the two methods will be performed using simulated data.  Finally these 

methods will be used to analyze data obtained from NHANES.  
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1.2 Previous Studies 

A discussion will now follow of previous work comparing variance estimation 

techniques in complex surveys.  It is important to note that while studies have been 

conducted to compare variance techniques for complex surveys, these studies have yet to 

be extended to AUC. 

 A study published in 1996 by Rust and Rao examined data obtained from 

NHANES.  Replication based variance estimation methods such as the bootstrap and 

jackknife have been suggested to  “confront the fact that the sample design, …, impacts 

the level of error associated with estimates obtained from the data” (Rao).  Studies, such 

as those done by Kovar et al, have shown that both the bootstrap and jackknife methods 

provide similar results when looking at linear estimators (Rao).  Kovar et al also showed 

that the jackknife method had lower mean square error as an estimator of the sampling 

variance.   

 Several publications have looked at comparing the jackknife technique to another 

replication method known as balanced repeated replication (BRR).  It should be noted 

that in Rust 1985, the BRR method has been shown to be similar to the bootstrap method 

in terms of variance estimates behavior (Rust).  A paper published in 1985, this time by 

Rust alone, compared variance estimation for complex estimators in sample surveys.  In 
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this paper, Rust compared the jackknife method with the BRR method.  Rust found that 

that the BRR method performed better than the jackknife in variance estimation of 

population estimates from sample surveys.  The work of Kish and Frankel looked at 

comparing these methods for estimation of ratios.  This study found that BRR provided 

the best coverage in terms of confidence intervals calculated around the estimates for the 

ratios.    Cambell and Meyer also compared BRR and jackknifing for variance estimation.  

Their results agreed with Kish and Frankels findings that BRR provided the best 

confidence intervals.  It also found that BRR gave better performance across a variety of 

population conditions.   

 These studies would suggest that perhaps the jackknife procedure will not 

perform as well as other replication techniques.  However, these studies have focused on 

specific population estimates, such as ratios, and have yet to look at how these replication 

methods will behave when used to estimate AUC and its variance.  This research is the 

first step in examining how these previous results compare to those proposed in this 

research for AUC. 
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1.3 Outline of Thesis 

The purpose of this thesis is to compare the bootstrap and jackknife variance 

estimation techniques in estimating the variance of AUC for data collected using one-

stage cluster sampling designs.  This will be accomplished by first applying both 

techniques to simulated data. This simulated data will be structured to look at the effect 

of true population AUC, prevalence of disease and number of clusters sampled on both 

estimation techniques.  The techniques will then be compared using the results from the 

simulated data study.  Finally, both techniques will be applied to data collected from 

NHANES in order to both compare the provided variance estimates by both techniques 

and to determine whether or not exposure of the US population to harmful chemicals 

effect hormone levels in women. 

Before these variance estimation techniques can be applied, the research methodology 

will be discussed.  First, a discussion of survey design will be given.  This will include an 

overview of one-stage cluster sampling designs.  Then, a discussion of NHANES will 

outline how this survey is conducted and how its data is structured for analysis.  

Background of the ROC curve will be provided, including an introduction to logistic 

regression analysis and how the ROC curve is calculated.  A discussion on summary 

measurements for the ROC curve is given, focusing in particular on the area under the 

ROC curve.  Finally, the methodology concludes with a discussion of variance estimation 

methods, including detailed descriptions of the bootstrap and jackknife variance 

estimation techniques. 
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Following the methodology, the data will be introduced.  A description of the 

simulated data will be given.  This will include full details of how the simulated data is 

structured and how it was created.  Further, the NHANES data will be described 

including what variables were collected, and how they were collected.  A logistic 

regression analysis will be introduced to determine if exposure to ten furans has an effect 

on reproductive and thyroid hormone levels in women.  Once the data has been 

introduced, the results will be presented.  A discussion of the methods used will include a 

description of how the bootstrap and jackknife techniques were applied to both the 

simulated data and the NHANES data.  Finally, the results from the simulated data and 

NHANES are presented.  The results for the NHANES data will not only include the 

comparison of the two variance estimation techniques but also the results of the research 

question.  Conclusions and discussion of implications of the research is then presented.  

This will include suggestions for future work. 
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 2. Methods 

2.1 Survey Design 

Survey analysis is typically conducted as if all sample observations were 

independently selected with equal probabilities; however, in practice the sample selection 

is more complex.  Often with survey data some subjects may be selected with higher 

probability than others.  Also, some subjects are included in the sample simply because of 

their membership in a certain group, as in a cluster sample.  So the question arises, “What 

special methods and computer programs are available for the more appropriate analysis 

of complex survey data?”  Implementing typical survey analysis under the assumption of 

simple random sampling with replacement on surveys that employs stratification and 

clustering of observations along with unequal selection probabilities can lead to bias and 

misleading results (Lee).  This is due in part to the complex survey design, which is 

defined as any survey that has restrictions on the sampling other than the simple random 

sample with replacement assumption. These complex designs require special 

consideration when analyzed.  Some examples of complex survey designs are those 

surveys that implement stratification or cluster sampling, or a combination of both.  

Stratification employs the use of scientifically identified groups known as strata, to split 

the population into different groups for analysis. Cluster sampling employs the use of 

clusters to split the population into convenient and cost effective groups, not necessarily 

considering the differences between the groups.  Many large scale population studies use 
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such cluster designs to efficiently organize the study.  The focus of this research will be 

on cluster sampling techniques.   
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2.1.1 One Stage Cluster Sampling 

One type of complex survey sampling design is cluster sampling.  In cluster 

sampling, one chooses observations by groups of elements (called clusters) rather than by 

individual elements. An advantage is that cluster sampling can reduce survey costs when 

acquiring information on groups or clusters is easier and less expensive than obtaining 

information for individuals.  All survey methods still require the use of a sampling frame 

which lists all possible elements available for the study.  Unfortunately it is sometimes 

difficult to find a good frame for listing population elements. However, a frame listing 

clusters may be readily available. For example, if a study is interested in interviewing 

individuals in a certain city living in apartments, a listing of all residents in the city may 

not be available.  However one could easily obtain a listing of apartment buildings in the 

city.  The apartment buildings could then be used as clusters. 

Often in complex surveys the sample sizes for each cluster or group are not equal.  

In such cases, elements in the smaller clusters are more likely to be chosen for the sample 

over the larger clusters.  Also in certain complex designs, the clusters may be stratified 

according to certain survey objectives.  This use of disproportionate stratification and 

unequal sized clusters complicates the estimation process (Lee).   

To obtain a cluster sample, the first task is to specify the clusters to be used.  

Typically measurements within a cluster are correlated.  Therefore the amount of 

information contained from one element in a cluster about a population parameter may 
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not be substantial.  However, it is not uncommon to come upon the situation where 

elements within a cluster are very different from one another. One example may be 

dorms on a college campus, for which one would expect residents to differ in some way.  

In the case where the elements in a cluster are similar, more information may be gathered 

by sampling a larger number of clusters of smaller size.  When considering a cluster 

sample it is important to note the differences in the construction of a stratum versus a 

cluster.  As previously noted, strata are typically very different from one another with 

respect to characteristics being measured; however, elements within a stratum are to be as 

homogeneous as possible.  On the other hand, clusters should be as heterogeneous as 

possible within, and one cluster should be very much like another to take full advantage 

of the cost efficiency of cluster sampling.  This is so each cluster is representative of the 

true population.  It also reduces variability.  Once a sampling frame of clusters is 

obtained, a simple random sample of those clusters is chosen. Then all elements in every 

selected cluster are sampled for inclusion in a study or survey. Issues surrounding the 

homogeneity within and between clusters as well as sample sizes within a cluster must be 

considered in variance estimates of population parameters. 

The next section will describe one survey that implicates the use of cluster 

sampling, the National Health and Nutrition Examination Survey (NHANES). 
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2.1.2 National Health and Nutrition Examination Survey (NHANES) 

The National Health and Nutrition Examination Survey (NHANES) is a program 

of studies designed to assess the health and nutritional status of adults and children in the 

United States, conducted by Centers for Disease Control (CDC).  The NHANES program 

began in the early 1960s and has been conducted several times as a series of surveys 

focusing on different population groups or health topics until the 1990’s.  Since 1999, the 

survey has been conducted continuously with data being combined in two year intervals. 

The survey is unique in that it combines interviews and physical examinations.   The 

CDC makes this collected data available, both from interviews and physical 

examinations, for use by the public and other health organizations on their website.   

NHANES is conducted by first splitting the country into counties, which serve as 

primary sampling units and using these counties as a sampling frame.  Of the many 

counties across the country, 15 are selected to be visited each year.  Clusters of 

households are selected, each person in a selected household is screened for demographic 

characteristics, and one or more persons per household are selected for the sample.  This 

research uses, NHANES 2001-2002, for which there were 13,156 persons selected for the 

sample; 11,039 of those were interviewed (83.9%) and 10,477 (79.6%) were examined in 

the NHANES mobile examination center (MEC).  The NHANES interview includes 

demographic, socioeconomic, dietary, and health-related questions.  In addition, the 

examination component consists of medical, dental, and physiological measurements, as 

well as laboratory tests, which are administered by highly trained medical personnel.   
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Health interviews are conducted in respondents’ homes, and health measurements are 

performed in specially designed and equipped mobile centers, which travel to the 

designated locations throughout the country.  The mobile center staff automatically 

transmit data into databases where it is available to CDC staff.  Survey information is 

available to CDC staff within 24 hours of collection.  This quick data collection and 

submission enhances the capability of collecting quality data and increases the speed with 

which results are released to the public.   

The sample for the survey is selected to represent the non-institutionalized U.S. 

population of all ages, meaning that both children and adults are selected to be questioned 

and examined.  The tests and procedures performed in the examination depend on the age 

of the participant; in general, older individuals receive more extensive examinations.  All 

participants visit the physician, give dietary interviews and have body measurements 

taken, and all but the very young have blood taken and a dental screening.  Participants of 

NHANES receive compensation and a report of medical findings, and all information 

collected in the survey is kept strictly confidential.   

The National Institutes of Health (NIH), the Food and Drug Administration 

(FDA) and CDC are among the agencies that rely upon NHANES to provide data 

essential for the implementation and evaluation of program activities (Services).  

Findings from the NHANES survey are used to determine the prevalence of major 

diseases and risk factors for diseases, and chronic conditions in the population.  Risk 

factors, those aspects of a person’s lifestyle, constitution, heredity, or environment that 
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may increase the chances of developing a certain disease or condition, are examined.  

Past surveys have provided data to create growth charts used nationally by pediatricians 

to evaluate children’s growth.  Blood lead data were instrumental in developing policy to 

eliminate lead from gasoline, food and soft drink cans, resulting in a decline in elevated 

blood levels by more than 70% since the 1970s (Services).  Data have continued to 

indicate that undiagnosed diabetes is a significant problem in the United States.  Facts 

about the distribution of health problems and risk factors in the population give 

researchers important clues to the causes of disease.  From the NHANES survey, the 

CDC can identify the health care needs of the population, from which government 

agencies and private sector organizations can establish policies and plan research, 

education, and health promotion programs to help improve present health status and 

prevent future health problems. 

One problem with analyzing the NHANES data is the complex survey structure.  

NHANES is described by the CDC as a complex sample survey.  Data collected comes 

from interviews, examinations, and laboratory tests based on blood and urine samples.  

Dust or tap water samples may also be collected in the home.  The source of a data item 

is important for both assessment of quality of information and for determining the 

appropriate sampling weights.  Interview data, while administered by a trained NHANES 

member, are based on self reporting and are therefore subject to non-sampling errors, 

such as recall problems, and misunderstanding of the question, among other factors.  

Examination data and laboratory data are subject to measurement variation and possible 
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examiner effects.  To help reduce these errors, prior to and during data collection, 

NHANES field staff participates in comprehensive training and annual refresher training 

for interviewers and MEC staff.  The primary sampling units (PSUs) for the NHANES 

survey are generally single counties, although small counties are sometimes combined to 

meet a minimum population size.  Because NHANES is a complex probability sample, 

analytic approaches based on data from simple random samples are usually not 

appropriate.  As with any complex probability sample, the sample design information 

should be explicitly used when producing statistical estimates or undertaking statistical 

analysis of the NHANES data.  Ignoring the complex design can lead to biased estimates 

and overstated significance levels.  Sample weights and the stratification and clustering 

of the design must be incorporated into an analysis to get proper estimates and standard 

errors of estimates. 
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2.2 Receiver Operator Characteristic (ROC) Curves 

2.2.1 Logistic Regression 

Often when looking at survey data the responses are categorical, whether binary 

(having two outcomes), nominal, (having several unordered outcomes) or ordinal (having 

several ordered outcomes).  To examine the association among variables methods using 

categorical response variables are necessary.  Logistic regression is a commonly used 

analysis method when conducting surveys, as it is used to examine the association of a 

categorical outcome or response with a number of independent variables (Lee).  

Specifically, logistic regression is a way of converting the proportions or rates of 

categorical data into numbers that have real interpretations.  For example, logistic 

regression is commonly used when the outcome or response is the presence or absence of 

a condition, often a disease.  In these cases, the explanatory variable is often a test or 

procedure used to detect this condition.  Logistic regression allows us to convert these 

agreement proportions into probabilities of having the disease.  In addition, these 

probabilities can be converted into sensitivity and specificity which can be used to 

determine the accuracy of a procedure or test in successfully predicting the absence or 

presence of a condition.  Sensitivity is the probability that the test correctly identifies a 

diseased patient with the disease and specificity is the probability that the test correctly 

identifies the non-disease patients without the disease.  Table 1 below helps demonstrate 

the idea of sensitivity and specificity and how they are calculated. 
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Table 1 

 Actual Condition of Population  

Test Result Patients with Disease Patients without Disease Totals 

Positive 

Negative 

a 

c 

b 

d 

a+b 

c+d 

Totals a+c b+d a+b+c+d 

 

As defined by Zhou in Statistical Methods in Diagnostic Medicine, the sensitivity 

of a test is its ability to correctly identify patients who are known to have the condition.  

And similarly specificity is the probability that the test result is negative, given that the 

condition is absent.  Sensitivity is the true positive rate and specificity is the true negative 

rate, because the test or procedure indicates the correct diagnosis (Zhou). Sensitivity is 

calculated as the proportion of true positives = a
a c+

.  Specificity is calculated as the 

proportion of true negatives = d
b d+

.  

While these measures give good estimates of how well a test performs they are 

dependent on the cutoff used to define positive and negative test results, also known as 

the decision threshold (Zhou).  Sensitivity and specificity are affected by the choice of 

decision threshold but are not affected by the prevalence of the condition, which makes 

them good measures of intrinsic accuracy. Using logistic regression provides the 
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sensitivity and specificity of a procedure or test at all decision thresholds giving an idea 

of how well a test performs over the entire range of decision thresholds.   
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2.2.2 Receiver Operator Characteristic (ROC) Curves 

From logistic regression a graph in which the Y-axis represents sensitivity and the 

X-axis represents 1 minus specificity can be obtained for every possible threshold.  This 

plot is the Receiver Operator Characteristic or ROC curve.  An ROC curve is a way of 

describing the intrinsic accuracy of a test apart from the decision thresholds.  Since the 

1970s, the ROC curve has been the most valuable tool for describing and comparing 

diagnostic tests and procedures (Zhou).  It is interesting to note that the name “receiver 

operator characteristic” curve comes from the notion that given the curve, we – the 

receivers of the information – can use (or operate at) any point on the curve by using the 

appropriate decision threshold (Zhou).  As stated above, the sensitivity and specificity of 

a procedure or test is independent of disease prevalence, and since the ROC curve is a 

plot of these measurements, it too is independent of disease prevalence.  Also, the ROC 

curve has the advantage of being invariant to monotonic transformations, as it does not 

depend on the scale of the test results (Zhou).  

ROC curves can be constructed from either objective or subjective measurements.  

However, regardless of the type of decision threshold the curve has the same 

interpretation; it illustrates the trade-off between the sensitivity and false positive rate as 

the decision threshold changes.  For measurements that are made objectively, the decision 

variable is explicit, so one can choose from an infinite number of decision thresholds 

along the continuum of test results.  Also for diagnostic tests interpreted subjectively, the 
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decision thresholds are implicit or latent, for they exist only in the mind of the observer 

(Zhou).    

A procedure or test that cannot discriminate between presence and absence of a 

condition will provide an ROC curve which is a forty-five degree  line passing through 

the origin with slope of one (Giulia Bisoffi).  The best tests have high sensitivity and low 

1- specificity.  Correspondingly, effective tests or procedures will provide a convex curve 

above this line.  Specifically the ROC curve gives the precise magnitude at which the 

false positive rate increases as the sensitivity increases (Zhou).  Assuming the statistical 

model used for the disease and non-disease populations has a binormal distribution, as it 

is the most commonly used model for fitting ROC curves in diagnostic medicine, the 

curve is then completely specified by two parameters, “a” and “b”.  A binormal 

distribution assumed that both the non-disease and disease populations are normally 

distributed with different means and standard deviations 

( ) ( )2 2, ,,disease N non disease ND NDD NDμ σ μ σ⎛ ⎞−⎜ ⎟
⎝ ⎠

: :
 
Where ‘a’ is the standardized 

difference in means of the distributions of the test results for patients with and without 

the condition; and ‘b’ is the ratio of the standard deviations of the test results for patients 

without versus with the condition (Zhou). 

Through the use of logistic regression, a statistical model can be fit to the test 

results of a sample of subjects producing a fitted ROC curve (or smooth curve) (Zhou).   

This is in contrast to the empirical ROC curve which only uses the observed data.  
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Assuming they are on two similar scales one can compare two ROC curves.  For 

example, it may be of interest to compare two testing procedures on their accuracy of 

correctly diagnosing the same disease.  It may be of interest to compare the two ROC 

curves.  In situations like this, it is helpful to have a single number to compare the curves.  

In the following section we will talk about one such summary for ROC curves known as 

the area under the ROC curve (AUC). 
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2.2.3 Area under the ROC Curve (AUC) 

The area under the ROC curve (AUC) is a single number summary of an ROC 

curve that one can use to compare the effectiveness of two separate diagnostic tests or 

procedures.  It is easier to compare a single number than to compare both the sensitivities 

and specificities of the two tests (Zhou).    When presented with two tests/procedures 

used in detecting a certain condition it is not always feasible to simply directly compare 

two ROC curves.  It may be that the two curves are very similar making it hard to detect 

which is better.  Therefore rather than compare two ROC curves visually, the AUC for 

the two ROC curves are compared.  As such, the AUC is “the most common quantitative 

index describing an ROC curve” (Hanley). 

There are two methods for computing estimates of the AUC. These depend on the 

assumptions regarding the underlying distributions of the two populations for those with 

and without the condition.  If binormality of the two populations is assumed then a 

generally unbiased estimate for AUC can be obtained.  In this case the area under the 

smooth or fitted ROC curve is calculated as: 

 
21

aA
b

⎛ ⎞
⎜ ⎟= Φ
⎜ ⎟+⎝ ⎠

 1.1 

Where ( )Φ is the cumulative normal distribution, ( )D NDa
D

μ μ
σ
−

=  and 

NDb
D

σ
σ

= (Zhou). 
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In this case μND and σND represent the mean and standard deviation of the population of 

subjects without the condition and μD and σD represent the mean and standard deviation 

of the population of subjects with the condition.  However, if no assumptions are made 

concerning the underlying distributions of the two populations, then nonparametric 

methods can be used to estimate the AUC.  The nonparametric estimate of the AUC is 

found through the trapezoidal method (Korn).  First the ROC curve is separated into 

many segments, the area of each segment is computed, and then the computed areas of 

these trapezoidal segments are summed. Typically the trapezoidal method will 

underestimate the area (Zhou). If we let TNDi represent the observed test result for the ith 

subject without the condition, and TDj the observed test result for the jth subject with the 

condition.  Then a formula for “the nonparametric estimate of the area, denoted ANP ” is 

given by:  

 ( )1 ,A T TNP Di NDjn nND D
ϕ= ∑∑  

where 
( ) ( )

( )
1, 0 if ,  ,  if , 2

and , 1 if 

T T T T T T T TDj NDi NDi Dj Dj NDi NDi Dj

T T T TDj NDi NDi Dj

ϕ ϕ

ϕ

= > = =

= <

 (Zhou). 

This formula is useful for both ordinal and continuous data.  It is interesting to 

note that the nonparametric estimate of the AUC using the trapezoidal method is 

equivalent to the Mann-Whitney statistic for the rank sum test.  In general the 

interpretation of the AUC is the same regardless of how it is computed.  The AUC can be 
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interpreted in several ways.  The most popular interpretation is that the AUC is the 

probability that a randomly chosen subject with the condition of interest has a 

test/procedure result indicating greater suspicion than that of a randomly chosen subject 

without the condition of interest.  Another interpretation of the AUC is that it is the 

average value of sensitivity (specificity) for all possible values of specificity (sensitivity) 

(Zhou).  As stated previously, the ROC curve is invariant to the prevalence of the 

condition and therefore the AUC is also invariant to the prevalence of the condition.  

Therefore, the ROC curve area is simply a description of a test’s inherent ability to 

discriminate between subjects with versus without the condition (Zhou). 

The AUC takes on values between 0 and 1, since the ROC is a plot of 

probabilities bounded by 0 and 1.  Although the true range is between 0 and 1, we expect 

by chance a test to correctly detect a condition about 50% of the time.  Thus the practical 

lower bound of AUC is 0.5.  An area of 1.0 means that a test or procedure is performing 

perfectly, so that the test or procedure correctly diagnoses each patient as having or not 

having the condition.  A diagnostic test or procedure when the ROC curve falls above the 

chance line (has an AUC greater than 0.5) will have at least some ability to discriminate 

between patients with and without the condition (Zhou).  

Finally it is commonly of interest to compare two testing procedures and their 

ability to correctly diagnose patients to the same condition.  If the population is known, 

then one can test if the two ROC curves are exactly the same with the hypothesis:  

 : ,  vs. : ,0 1H a a b b H a a b bND D ND D ND D ND D= = ≠ ≠  
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 Another way to compare these procedures is to compare their respective AUCs.  

In order to determine if the two AUCs are significantly different the variances of both 

ROC area estimates must be taken into account.  Some methods for estimating these 

variances are discussed in the next section.
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2.3 Variance Estimation Methods 

Estimates of variances are necessary to evaluate the significance of the AUC 

statistic. For complex estimators such as the AUC statistic used in sample surveys, 

special difficulties arise in the estimation of the variance.  Such difficulties could be that 

the variance of the estimate may not be a linear or even known function of the population 

parameters (Levy).  Unique to survey designs, a researcher who wishes to analyze data 

and compute appropriate variance estimates from a complex sample survey must 

overcome three major issues in the data: (1) the presence of survey weights in the data, 

(2) non-response and (3) the sample design, with the weighting adjustments for non-

response compensation and post-stratification.  These issues will impact the level of error 

associated with any estimates obtained from the data (Rao).  There are a variety of 

approaches that can be taken to deal with the impact of the design and estimation features 

of the survey on the inference of the population parameter. 

The assumptions associated with the underlying population of interest determine 

which methods can be used to estimate the variance of an AUC estimate.  If one assumes 

binormality of the underlying distributions, variance can be computed using typical 

variance estimation methods using linear estimates.  When inferences about the 

parameters of a finite population are based on sample survey data without model 

assumptions, other methods must be used to derive estimates of the variances of the 

parameter estimates (Rust).  One technique is replication, in which the variance of the 
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parameter estimator is obtained from the variability of estimates derived from different, 

comparable parts of the original sample (Rust). These methods, once thought to be too 

tedious and difficult to perform, have recently grown in popularity with the 

implementation of computer algorithms.   

“Replication is a general class of methods in which an estimate of the variance of 

an estimated population parameter is obtained by expressing the estimated population 

parameter as a sum or mean of several statistics, each of which is based on a subset of the 

sample observations.  One can obtain an estimate for the variance of the estimated 

population parameter by calculating the variance of these “part sample” statistics” 

(Levy).  Hansen et al in a 1950s textbook first referred to these replication techniques as 

random group methods.  In current literature replication methods are sometimes called 

resampling methods.  

Replication methods estimate the sampling variance of a statistic by computing 

the statistic for subsets of the sample and examining its variability over the subsets 

(Levy).  All replication techniques use computational intensity to overcome difficulties 

and inconveniences in utilizing an analytic solution to the problem at hand (Rao).    

Two popular replication methods include the bootstrap and the jackknife.  In the 

following two sections the bootstrap and jackknife variance estimation procedures are 

outlined.  Later, a discussion and comparison of the two methods is conducted to 

determine how each performs in estimating the variance of the AUC statistic from a one-

stage cluster survey.
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2.3.1 Bootstrap 

The bootstrap is one replication method that can be used for variance estimation 

in sample surveys.  The name bootstrap derives from the phrase “to pull oneself up by 

one’s bootstrap” (Efron). The bootstrap was introduced in 1979 as a computer based 

method for estimating variance. Because of modern technological breakthroughs, the 

bootstrap has been developed more recently because the modern computer power it 

requires to simplify intricate calculations (Efron).   

The general idea of the bootstrap is to create artificial datasets with the same 

structure and sample size as the original data.  To create these artificial datasets simple 

random samples are taken from the original with replacement, so that the same PSU may 

be chosen multiple times and included in the same artificial or pseudo sample.  Once the 

artificial datasets are chosen, an estimate, *
bθ  of the parameter of interest,θ  is calculated 

from each pseudo sample.  Then an estimate of the variance of the parameter of interest is 

calculated as follows for the bootstrap:   

 ( )
2

1 * *( )
1 1

B
VarBS bB b

θ θ θ= −
− =
∑

 
 
   

where B is the number of replicate samples and 1* *

1

B
bB b

θ θ=
=
∑ .     
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The issue of how many replicates is required to provide an acceptable variance 

estimate arises.  This problem is not trivial since the precision of the variance estimator 

continues to increase as the number of replicates increases, but the resources needed to 

carry out the bootstrap method obviously increases as well (Rao).  It has been suggested 

that the number of replicate samples needs to be large. Efron states that a large B would 

be 200 replicates, however if confidence intervals will be calculated then it has been 

suggested that B needs to be 1000 (Efron).  While most literature when describing the 

appropriate number of replicates reference Efron who says for just variance estimation B 

= 200 is efficient, several studies have been done showing that perhaps this standard is 

low.  Booth and Sakar (Booth) in 1998 published an article that argued that the number of 

replicates should be determined by the conditional coefficient of variation.  Efron’s 

suggestion is based on the unconditional coefficient of variation which involves both 

sampling and resampling variability.  Booth argues that only the resampling variability 

needs to be considered and provides the following simple formula for B, 

 
( ) 212 2
2B
α

δ

−Φ
≈

 

  (0.1) 

Where the values of α and δ are determined by 
2ˆ

1 1 12ˆ
BP

σ
α δ δ

σ

⎛ ⎞
⎜ ⎟− = − < < +
⎜ ⎟
⎝ ⎠

and 
2ˆ
2ˆ
Bσ

σ
is 

the relative error due to resampling.  Here δ is a user defined positive constant, 2
Bσ is the 
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bootstrap approximation of the variance and 2σ is the true variance.  This formula 

requires approximately 800 replicates to achieve a relative error less than 10% with 

probability .95 (Booth).  However when considering confidence intervals, Booths’ article 

calculates a required B similar to Efron’s B = 1000.   This research will use B=800 

bootstrap replicates. 
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2.3.2 Jackknife 

The second replication-based variance estimator discussed here is the jackknife.  

Jackknifing is another method for estimating the variance of estimates obtained from 

complex sample surveys.  As a replication based technique it is calculated using the 

estimates of the parameter of interest for several part samples and then the variance is 

found using these estimates.  Unlike the bootstrap, the jackknife has a longer history 

originating in 1956 with Quenoille. Tukey in 1958 extended the definition to say that the 

technique could be adapted to produce variance estimates for many estimators (Rust).  In 

particular, the jackknife method can be used to estimate the variance of parameters from 

complex sample survey data.  A result of this long history is that there now exist several 

variations to the jackknife procedure (Levy).  The use of the jackknife procedure requires 

the data to be split into groups.  A single jackknife replicate is created by removing from 

the sample all units associated with a given PSU from one group and inflating the 

weights of all other units from the same group (Rao).  

To find the jackknife variance estimate, suppose the data is composed of L 

clusters, the sample within each cluster is subdivided into nh disjoint sample PSUs.  For 

each PSU in the original dataset an estimate ( )( )hir is obtained based on all observations 

except those in PSU i  in cluster h .  Then the variance estimate for the parameter of 

interest is obtained by:   
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2

1( )
1 1

nL hnhVar r r rhinhh i

−
= −

= =
∑ ∑

 

 
where r is the estimate for the parameter of interest from the entire original dataset 

(Levy).  This method is referred to as the delete one jackknife technique.  The delete one 

jackknife method deletes one PSU at a time and adjusts the full sample weights for the 

other PSUs in that cluster, repeating the process for each cluster independently. 

It is important to note that the estimate r(hi) consists of cluster estimates from all 

PSUs except PSU hi and that the estimate from that PSU for the cluster is calculated 

based on the estimates of the other PSUs within the cluster.  This creates a need to 

appropriately adjust the estimate by 
1

nh
nh −

 to reflect the absence of the data from that 

particular PSU.  Alternative methods to calculate the jackknife variance estimator that 

differ from the method above do exist.  One alternative is to replace the whole sample 

parameter estimate, r, with the mean of the r(hi) estimates.  An advantage of using the 

whole sample parameter estimate, r, rather than mean is that it generalizes readily to more 

complex estimators (Rao). 

The precision of the jackknife estimate is maximized when each PSU is of size 

one and each unit is omitted once.  Also, if necessary the jackknife procedure can be used 

with combined clusters.  In this case, replicates can be formed by omitting PSUs from 

several clusters at a time, without adding bias to the jackknife variance estimate (Rust).   

Studies have shown that the jackknife variance estimator retains good properties over a 
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large range of sample survey statistics, with the introduction of only slight bias.  This bias 

typically has little impact on the inferences made about the population parameters (Rao).  

It is suggested to ensure the variance estimator remains approximately unbiased to have 

the designation of PSUs as 1 and 2, respectively, within each cluster, be random and not 

based on the data or PSU characteristics.  If with replacement sampling is used, 

numbering the PSUs based on selection order is sufficient (Rao). 
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3 Results 

3.1 Simulated Data 

It is of interest to determine whether bootstrap or jackknife replication techniques provide 

the best variance estimates for AUC from one-stage cluster survey data.  In order to provide 

evidence to determine which method performs the best, data must be simulated and include 

examining what if any factors may affect each technique.  Three factors in particular were 

examined with respect to their effect on variance estimation.  The first factor was true population 

AUC.  The second factor was prevalence in the population of the disease or condition, i.e. is the 

disease rare or more common.  The third factor was the numbers of clusters selected to sample.   

Larger true AUC would suggest that a test or procedure is more accurately distinguishing 

between patients with and without the disease.  It is expected that the higher the AUC (the better 

the test is doing), the less variability there would be.  Also if the true AUC is close to .5, this 

means the test is really no better than chance.  Therefore the closer the actual AUC is to .5 the 

more variability is expected.  It is of interest to determine if these expected trends exist within a 

complex survey design and whether or not the two variance estimation methods show consistent 

trends or if one method is immune to this factor.  In particular, data will be simulated for three 

different true AUCs, .90, .75, and .60. 

It is unclear how prevalence of a disease would affect variance estimation. As a disease 

becomes less common in the population it is unclear whether it would be easier to distinguish 

between disease and non-disease.  This will be addressed by accounting for different prevalence 
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levels of disease in the simulated data.  It is of interest to determine if the two variance 

estimation methods provide similar trends in prevalence or if they differ.  Three different 

prevalence levels of disease will be simulated, .5 prevalence, .3 prevalence, and .1 prevalence. 

Generally, variance decreases as sample size increases.  The simulated data will account 

for differing sample sizes by sampling differing numbers of clusters from the population.  It is 

expected that as the number of clusters sampled increases the variance estimates will decrease, or 

approach the true variance.  It will be determined whether this trend is consistent across both 

variance estimation techniques. Three different numbers of clusters sampled will be simulated, 

samples where 2 of 10 clusters are sampled, 5 of 10 clusters are sampled and 7 of 10 clusters are 

sampled. 
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3.1.1 Simulated Data Introduction 

To test these factors, data was simulated to obtain AUC estimates and variances using the 

bootstrap and jackknife techniques.  The simulated population consisted of 1000 individuals who 

were assigned to 10 clusters of 100 individuals each.  To create the simulated population some 

assumptions were made.  The first assumption is that the underlying disease and non-disease 

populations were normally distributed.  By making this assumption of binormality, equation 1.1 

can be used , where b is defined as the ratio of the variances between the non-disease and disease 

population,
2

2
ND

D

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

.  Once the area and b have been set, the equation can be solved for a as 

follows: ( )2 11 *a b Area−= + Φ .  To create the simulated data it was further assumed that the 

non-disease population was from a standard normal distribution, )(( )~ 0,1ND N . The ratio of 

variances, b, was set to be equal to one ( ( )11, 2 *b a AUC−= = Φ ).  Then for each AUC of 

interest the equation could be solved for a and the disease population would be distributed as 

normal with mean equal to a, and the variance would equal one, )(( )~ ,1D N a .   The total 

population was created by concatenating the non-disease and disease populations.  Then 10 

clusters were randomly assigned with each cluster containing 100 individuals.  To account for 

the different prevalence levels, once an area had been set and the disease and non-disease 

distributions had been found the population was created to account for different prevalence 

levels.  For the .5 prevalence, 500 individuals were drawn from the non-disease population 
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distribution and 500 individuals were drawn from the disease population distribution.  For the .3 

prevalence, 700 individuals were drawn from the non-disease population distribution and 300 

individuals were drawn using the disease population distribution.  Finally for the .1 prevalence, 

900 individuals were simulated from the non-disease population distribution and 100 individuals 

were simulated using the disease population distribution.  While the population reflected the 

prevalence the 10 clusters were drawn randomly and may not have the same prevalence within 

each cluster. Then to account for the differing sample sizes the following method was used.  

Once the area had been set and the three prevalence levels were created, within each prevalence 

level three different samples were taken, the first sampling only 2 of the 10 clusters of size 100 

individuals, the second sampled 5 of the 10 clusters each of size 100 individuals and finally the 

last sample consisted of 7 of the 10 clusters of size 100 individuals from the population.  This 

resulted in 27 combinations of true area, prevalence and number of clusters sampled.  For each of 

the 27 cases, 100 replicates were taken.  The simulated data was created using an original SAS 

macro specifically written for the purpose of this thesis (see appendix). 
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3.1.2 Simulated Data: Methods 

A previous section detailed how each sample was created for the simulated data. This 

section will detail how the bootstrap and jackknife techniques were applied.  For a given case, 

once a replicate was created it was uploaded into a SAS macro that would determine the AUC 

estimate and its variance based on either the jackknife or bootstrap method.  A description of the 

two original macros designed to analyze the simulated data will now be provided. 

In a previous section a general description of the bootstrap method to variance estimation 

was given. An original SAS macro was created to carry out this process for the simulated data 

created (see appendix).  This macro requires the user to specify: an input data set, a total sample 

size, the number of bootstrap replicates (B), an index variable and the cluster variable name.  

From literature research it was determined to use B =800 bootstrap replicates.  Each of the 100 

samples within a case simulated as described previously will be used as an input dataset.  The 

total sample size will be dependent on the number of clusters sampled in the simulated sample, 

for 2 clusters sampled the sample size will be 200, for 5 clusters sampled the sample size will be 

500 and for 7 clusters sampled the sample size will be 700.  For each bootstrap replicate a 

pseudo dataset is created by taking a simple random sample with replacement from the original 

simulated sample.  This pseudo dataset will have the same total sample size as the original 

simulated sample; since the sample was taken with replacement certain observations can be 

chosen more than once for inclusion in the pseudo dataset.  A survey logistic regression is 

applied to the pseudo dataset to predict whether or not each observation is from the diseased or 

non-diseased population.  From the survey logistic regression an AUC estimate is obtained.  This 
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process is repeated for B=800 bootstrap replicates on each sample.  A dataset is created that 

contains the 800 AUC estimates obtained from the 800 bootstrap replicates.  The AUC estimate 

for the simulated replicate is then determined to be the mean of the 800 replicate AUC estimates.  

And the variance for the AUC of the simulated sample is calculated as the variance of the 800 

AUC estimates obtained from the 800 bootstrap replicates.  This process is done for each of the 

100 replicates for each of the 27 cases, so that in the end there are 100 AUC estimates and 

variance estimates using the bootstrap technique for each case.  Once the 100 replicates for each 

case were created the mean AUC and mean variance were computed for each of the 27 cases 

from their 100 replicates. 

In a previous section a general description of the jackknife method to variance estimation 

was given. An original SAS macro was created to carry out this process for the simulated data 

created. (See appendix).  The macro requires the user to specify: an input data set, a total sample 

size, the number of clusters sampled, the sample size within each cluster, an index variable, the 

cluster variable name, an individual weight variable and a jackknife weight variable.  Again, 

total sample size is dependent on the number of clusters sampled and is the same as given above.  

The number of clusters sampled will be 2, 5, or 7.  The sample size within each cluster is the 

same for all samples, 100 individuals in each cluster.  The individual weights are calculated as 

( )where  the total # of clusters in the population = 10 , and M M ss = =  # of clusters sampled (2, 

5 or 7), giving the following weights: for 2 clusters sampled the weight will be 5, for 5 clusters 

sampled the weight will be 2 and for 7 clusters sampled the weight will be approximately 1.4.  

The jackknife weight is calculated 
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as 1 where # clusters sampled(2, 5, or 7), cluster sample size = 100
1

s nh s nhnhh

−
= =

=
∑ . So for 2 

clusters sampled, the jackknife weight is 1.98, for 5 clusters sampled the jackknife weight is 

4.95, and for 7 clusters sampled the jackknife weight is 6.93.  For each replicate of each case the 

macro first runs a survey logistic regression on the replicate to predict whether each individual 

was from the disease or non-disease population.  An AUC estimate is obtained from the survey 

logistic regression; this will be called the full AUC.  A pseudo dataset is then created by 

removing one observation from the original replicate dataset.  Once an observation is removed 

the macro determines from which cluster the observation was taken and reweights the remaining 

individuals within that cluster by a factor of 
1

nh
nh −

where hn is the number of individuals in each 

cluster ( )100nh = .  The weights of the individuals in the other clusters remain the same.  Once 

the pseudo dataset is created a survey  logistic regression is run to predict whether individuals are 

from the disease or non-disease population.  From the survey logistic regression an estimate of 

the AUC is obtained.  This process is repeated until each observation has been removed.  Again a 

dataset is created that contains the AUC estimates obtained from removing each observation one 

at a time.  This dataset will be the same size as the original replicate dataset. Again the estimate 

for the AUC of the replicate is determined to be the mean of the AUCs from the pseudo datasets.  

The variance is then determined to be ( )( )21

1 1

s nnh F inhh i
θ θ

⎛ ⎞−
−⎜ ⎟

⎝ ⎠= =
∑ ∑ where 1

1

s nh
nhh

−

=
∑ is the 

jackknife weight previously calculated and Fθ is the full AUC estimate and ( )iθ is the AUC 

estimate from the pseudo dataset where the ith observation was removed and n is the total sample 
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size.  This process is done for each replicate, so that in the end there are 100 AUC estimates and 

variance estimates using the jackknife technique for each of the 27 cases.  Once the 100 

replicates for each are obtained the mean AUC and mean variance are computed for each of the 

27 cases.   The following section will describe the results obtained from these analyses. 
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3.1.3 Simulated Data Results 

The true interest lies in determining whether the bootstrap or jackknife techniques for 

variance estimation provide better estimates for the AUC.  In statistics an estimator is assessed 

based on several characteristics.  These methods of assessment incorporate a trade-off between 

bias and variance of estimators.  Bias is defined as the difference between the expected value of 

an estimator and the true value of the  parameter it is estimating.  An estimate is said to be 

unbiased if its expected value is equal to the parameter it is estimating.  So before we can 

compare the variances of the bootstrap and jackknife estimates of AUC we must compare the 

estimates themselves to determine if one technique provides estimates that are more biased than 

the other.  Figure 1 below shows the AUC estimates from each method (Bootstrap and Jackknife) 

plotted against the true AUC.  As can be seen both methods give consistent results, both methods 

provide no bias when estimating the true AUC.  Statistical tests confirmed that both the bootstrap 

and jackknife AUC estimates were unbiased and that the bootstrap AUC estimates were not 

significantly different than the jackknife AUC estimates. Also note in Figure 2 below that the 

prevalence of disease does not seem to have any effect on the AUC estimates from either 

method.   
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Figure 1: Bootstrap and Jackknife AUC Estimates vs. True Area 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bootstrap and Jackknife AUC Estimates vs. Prevalence 
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Figure 3: Jacknife vs. Bootstrap Variance Estimates 

Using these results, it is determined that the bootstrap and jackknife techniques provide 

no bias for the AUC estimates and thus the better estimator can be determined by comparing the 

variances on the AUC estimates.  The method that provides smaller variance estimates will be 

the preferred method.  A graph of the Jackknife versus the Bootstrap variance estimates was 

plotted as seen in Figure 3.  Note the presence of an outlier located at true AUC of .60, 

prevalence of .1 and 2 clusters, this will be discussed further in the next section.  This graph 

shows that the jackknife estimates are consistently higher than the bootstrap variance estimates. 

As can be noted in Figures 4, 5, and 6, there is an obvious difference between variance estimates 

based on the number of clusters sampled.  This trend and others will be examined by 

implementing the use of a three-way block ANOVA.   
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Figure 4: Jackknife vs. Bootstrap Variance Estimates for 2 Clusters 

 

 

 

 

 

 

 

 

 

 

Figure 5: Jackknife vs. Bootstrap Variance Estimates for 5 Clusters 
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Figure 6: Jackknife vs. Bootstrap Variance Estimates for 7 Clusters  

 

Because the sample size of the dataset containing all replicates was so large and the 

variance estimates for both methods were so small, the ANOVA was first performed on the 

dataset containing the mean values from the 100 replicates to determine what factors will be 

included in the final analysis.  A three way ANOVA was conducted on both the mean bootstrap 

and jackknife variance estimates including main effects for true AUC, prevalence and number of 

clusters sampled as well as interactions.  For the jackknife variance estimates, no interactions 

were found to be significant at the .05 level. For the bootstrap variance estimates, all two-way 

interactions were found to be significant.  When Tukey’s multiple comparison procedure was 

applied to look at all pair-wise differences, all pair-wise differences of interest were found to be 

significantly different. This may be because the variance estimates are so small.  Upon 
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examining plots of theses two-way interactions, no non-ignorable interactions were found.  All 

interactions showed similar trends for the different levels of each factor.  Therefore it was 

decided to omit the two-way interactions in the final analysis.  The final analysis performed on 

the dataset containing all 100 replicates was a three-way block ANOVA with main effects for 

true AUC, prevalence, number of clusters sampled and the block factor of replicate.  The results 

of the analysis can be found in the Appendix.  The block factor consisted of a block for each of 

the 100 replicates so that each block contained all 27 cases and there were 100 blocks.   

For the bootstrap variance estimates, the ANOVA found that all three characteristics had 

an effect on variance estimates.  For the true AUC the block ANOVA found, after adjusting for 

prevalence level and number of clusters sampled, that area of .90 provided significantly lower 

variance estimates than all other areas.  Also, area of .75 provided significantly lower variance 

estimates than area of .60. Within the prevalence levels the block ANOVA found, after adjusting 

for number of clusters sampled and true AUC, that the .1 prevalence level had significantly 

higher variance estimates than both the .5 and .3 prevalence levels.  Also the .3 prevalence had 

significantly higher variance estimates than the .5 prevalence.  In other words, as the disease 

becomes rarer in the population the variance estimates tend to increase.  Finally, within the 

different number of clusters sampled the block ANOVA found, after adjusting for prevalence 

level and true AUC, that all three cluster groups had significantly different variance estimates.  

Two clusters sampled provided the highest variance estimates followed by 5 clusters sampled 

and finally 7 clusters sampled provide the smallest variance estimates.  In conclusion a three-way 

block ANOVA of  bootstrap variance estimates including main effects for true AUC, prevalence, 

and number of clusters sampled accounting for block factor of replicates, determined that all 
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Figure 7: Bootstrap Variance Estimates vs. True Area, Prevalence, and Clusters 

three factors have a significant effect on bootstrap variance estimation. As true AUC increases 

the bootstrap variance estimates decreases. The rarer a disease is the higher the bootstrap 

variance estimate will be.  Finally, the larger the sample size, or more clusters sampled, the 

smaller the bootstrap variance estimate.  These trends are illustrated in Figure 7 below. 
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For the jackknife variance estimates, the block ANOVA found that all three 

characteristics had an effect on variance estimates.  Looking at true AUC the block ANOVA 

found, after adjusting for prevalence level and number of clusters sampled, that area of .60 

provided significantly higher variance estimates than all other areas. Areas of .75 and .90 were 

not found to be significantly different. Within the prevalence levels the block ANOVA found, 

after adjusting for number of clusters sampled and true AUC, that the .1 prevalence had 

significantly higher variance estimates than both the .5 and .3 prevalence levels.  However 

prevalence levels .5 and .3 were not found to be significantly different.  In other words, rarer 

diseases have higher variance estimates than less rare diseases.  Finally, within the different 

number of clusters sampled the block ANOVA found, that 2 clusters had significantly higher 

variance estimates then 5 and 7 clusters, 5 and 7 clusters sampled were not found to be 

significantly different. In conclusion a three-way block ANOVA of jackknife variance estimates 

including main effects for true area, prevalence, and number of clusters sampled, determined that 

all three factors had a significant effect on jackknife variance estimation.  As true AUC 

decreases, gets closer to chance, the jackknife variance estimates increase. The rarer a disease is 

the higher the jackknife variance estimate will be.  Finally, the smaller the sample size, or fewer 

clusters sampled, the larger the jackknife variance estimates. These trends are illustrated in 

Figure 8 below. 
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Figure 8: Jackknife Variance Estimates vs. True Area, Prevalence, & Clusters 
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3.1.4 Simulated Data Conclusions 

To summarize, for bootstrap and jackknife variance estimation methods, the more rare 

the condition the higher the variance estimation.  Thus as a disease becomes more rare it 

becomes more difficult to distinguish those individuals with the disease and those without.  Also 

for both the bootstrap and jackknife variance estimation methods, as the AUC increases the 

variance decreases.  In other words, as the test or procedure is better able to correctly distinguish 

disease and non-disease subjects the variance decreases.  Note that the trend in the jackknife 

variance estimation method was not as strong as that in the bootstrap variance estimation 

methods. Finally the trends for the bootstrap and jackknife variance estimation methods are 

similar when looking at number of clusters sampled.  As number of clusters sampled increased 

the variance estimates decreased.  This trend was much stronger for the bootstrap method.  As 

mentioned previously there was an outlier in the jackknife variance estimates for true AUC of 

.60, prevalence of .1 and 2 clusters sampled.  Within the 100 replicates for this particular case 

there were 2 very large outliers.  When removed the jackknife trends for true AUC and 

prevalence remained the same.  However, when the outliers were removed there was no 

significant difference in jackknife variance estimates between the three number of clusters 

sampled. This may be an effect of the jackknife weight used in the estimation of the variance.  

Overall the bootstrap variance estimation method gave smaller variance estimates.  Therefore 

looking at the variances we find that the bootstrap variance estimation technique is the better 

method to use when estimating AUC from a one-stage cluster survey sample.
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3.2 NHANES Data 

 The purpose of the NHANES study in this research was to predict whether or not four 

hormones have abnormally high levels based on exposure to 10 furans collected from blood 

specimens while accounting for menopause status in women sampled to be representative of the 

non-institutionalized US population. 

3.2.1 NHANES Data Introduction 

The National Health and Nutrition Examination Survey (NHANES) as described in a 

previous section is unique in that it consists of two parts, interviews and a physical examination.  

The interview section involves a questionnaire to obtain demographic information as well as 

questions about people’s health and nutrition habits.  The physical examination involves the 

collection of blood, urine and swab specimens.  This section outlines the process for laboratory 

collection and the variables of interest for this research. 

Blood specimens were collected at the MECs.  The blood collection process involved the 

use of a screening questionnaire to detect any conditions that may exclude participants from 

having their blood drawn.  However, the urine collection procedure does not consist of a 

questionnaire; it is not as physically demanding.  Along with the urine specimen collection, 

pregnancy testing was conducted. 

Venipuncture, drawn from the examinee’s arm, was used for the blood specimen 

collection and the following exclusion criteria were in place for the safety of those patients 

unable to safely under blood specimen collection: 
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Hemophiliacs, participants who received chemotherapy within the last 4 weeks, and the 

presence of rashes, gauze dressings, casts, edema, paralysis, tubes, open sores or wounds, 

withered arms or limbs missing, damaged, sclerosed or occluded veins, allergies to cleansing 

reagents, burned or scarred tissue, shunt or intravenous lines on both arms. 

According to NHANES, venipuncture is performed to obtain laboratory results that 

provide prevalence estimates of disease, risk factors for exam components, and baseline 

information on health and nutritional status of the population.  The volume of blood drawn 

depends on the examinees age.  Volume of blood ranges from 9ml for 1-2 years old to 89-92ml 

for examinees 12 and older. 

In addition to blood specimens, urine is collected to obtain laboratory results that provide 

prevalence estimates of disease, risk factors for exam components, and baseline information on 

health and nutritional status of the population.  No exclusion criteria exist for the collection of 

urine specimens.  However, urine specimens are only collected on examinees age six and older.   

All specimen collection is conducted at the MECs, however only the complete blood 

count and pregnancy analyses are performed in the MEC laboratory, the rest of the specimen 

analyses are conducted off-site.  Training and quality control procedure are in place to ensure the 

quality of the laboratory work.  There are specific data processing guidelines provided to the 

National Center for Health Statistics (NCHS) and contractor staff with standards for naming 

variables, filling missing values, and handling missing records.  For example, when handling 

laboratory results below the lower detection limit they are to be replaced with a value equal to 
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the detection limit divided by the square root of two. The following section will detail the 

variables of interest from the laboratory dataset used in this research. 

It is of interest to analyze four particular hormones in women.  Included are reproductive 

hormones, consisting of follicle stimulating hormone (FSH), and luteinizing hormone (LH), and  

thyroid hormones, consisting of thyroid stimulating hormone (TSH), and thyroxin (T4).  

Menopause status in women can often have a large effect on the levels of these hormones in the 

body, and as such, serum FSH and LH levels along with questionnaire data on menstrual history 

were used to classify women according to menopausal status.  Women were classified as pre-

menopause and post-menopause. Serum FSH and LH along with menopause status are important 

for evaluating women’s risk for certain health condition such as cardiovascular disease and 

osteoporosis.  According to the CDC, serum TSH and T4 levels were used to assess thyroid 

function and provide population based reference information on these hormone levels.  The 

levels of these hormones were classified as being in a normal range or being abnormally high.  

The values considered to be abnormally high for each hormone was dependent on menopause 

status and differed for each hormone.  For FSH a patient, pre-menopause was considered to have 

abnormally high levels if the value of FSH was greater than 20, for post-menopause an abnormal 

level was greater than 120 (Essig, Follicle Stimulating Hormone).  For LH an abnormal level for 

pre-menopausal women was an LH value greater than 20, for post-menopausal women abnormal 

levels were defined as being greater than 55 (Essig, Luteinizing Hormone).  For TSH a pre or 

post-menopausal patient was considered to have abnormally high levels if TSH was greater than 

4 (Davis).  Similarly for T4 a pre or post-menopausal woman was considered to have abnormal 

levels if T4 was greater than 12 (Rea). 
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These hormone levels were obtained from the venipuncture collection with .5 milliliters 

of blood required to test FSH and LH and 1 milliliter required to test TSH and T4.  Only women 

age 35 to 60 were eligible to be tested for FSH and LH while all women age 12 and older were 

eligible to be tested for TSH and T4.  The furans of interest were also obtained from the 

venipuncture collection with 4 milliliters of blood being required to test for all ten furans.  

Women age 12 and older were eligible to have furan levels tested.   

The furans of interest are Tetrachlorodibenzofuran (tcdf), Pentachlorodibenzofuran 

(pncdf), Hexachlorodibenzofuran (hxcdf), Heptachlorodibenzofuran (hpcdf), and 

Octachlorodibenzofuran (ocdf).  From these furans a total of ten measurements were obtained for 

use in the analysis.  These are 2,3,7,8-tcdf, 1,2,3,7,8-pncdf, 2,3,4,7,8-pncdf, 1,2,3,4,7,8-hcxdf, 

1,2,3,6,7,8-hxcdf, 1,2,3,7,8,9-hxcdf, 2,3,4,6,7,8-hxcdf, 1,2,3,4,6,7,8,-hpcdf, 1,2,3,4,7,8,9-hpcdf, 

and 1,2,3,4,6,7,8,9-ocdf.   These furans fall into a larger category called organochlorines which 

according to the CDC are diverse, synthetic chemicals that are persistent in the environment and 

tend to bioaccumulate. The CDC claims that assessment of exposure to persistent 

organochlorines in a representative sample of the US population is needed to determine current 

prevalence and level of exposure and the potential for human health threat from exposure to 

these chemicals.  It is hypothesized that exposure to these furans have an effect on the level of 

several hormones, in particular on TSH, LH, T4 and FSH.  
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3.2.2 NHANES Methods 

The previous sections have detailed the NHANES survey, including how it was 

conducted and how the measurements were obtained; this section will detail how the bootstrap 

and jackknife variance estimation techniques were applied to the data to obtain AUC estimates 

and variance estimates.  From the previous simulation it was determined that the bootstrap 

technique provided smaller variance estimates.  It is now of interest to determine if these results 

are consistent when applied to data obtained from a complex survey implementing one-stage 

cluster sampling.  Also it is of interest to determine if exposures to certain furans lead to 

abnormally high hormone levels. 

A subset of the NHANES survey conducted from 2001-2002 was used in this analysis. 

This subset consisted of data collected from 1041 women.  The hormones and furans of interest 

are described in previous sections.  For simplification of analysis, the sum of the ten furans was 

used for the analysis instead of each individual furan.  Also as mentioned previously the 

menopause status of each woman was collected and will be used in analysis to help determine 

cut off values for abnormally high levels of hormones.   

The NHANES data is formatted so that each individual in the survey is assigned their 

own personal weight and thus each person is considered to be their own cluster.  Thus for this 

research the data consisted of 1041 clusters each of size one.  The prevalence of disease for each 

hormone is as follows.  For both FSH and LH the prevalence of disease was approximately .02 
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(98% normal and 2% abnormal).  For both TSH and T4 the prevalence of disease was 

approximately .05 (95% normal and 5% abnormal). 

An original SAS macro was created to apply the bootstrap technique of variance 

estimation to the NHANES data.  This macro is similar to the macro used for the simulated data 

with a few modifications.  The user must again specify an input data set, a total sample size, the 

number of bootstrap replicates (B), and an index variable.  Since each person is their own cluster, 

the macro does not need the user to specify the number of clusters in the dataset, the user does 

need to specify the weight variable.  This weight variable is supplied to the user in the original 

NHANES dataset.  And finally the user must specify the response variable to be used in the 

logistic regression analysis.  In this case the response variable will be each of the four hormones 

of interest (TSH, LH, FSH, and T4).  The number of replicates will be set to 800.  Similarly to 

the simulated data, for each replicate a pseudo dataset is created by taking a simple random 

sample with replacement from the original dataset.  A survey logistic regression is applied to the 

pseudo dataset using the sum of the furans and menopause status to predict abnormally high 

levels of the hormone.  From the survey logistic regression an AUC estimate in obtained.  The 

estimate for the AUC and variance estimate is calculated the same as before.   

Another original SAS macro was created to apply the jackknife variance estimation 

method to the NHANES data.  The user must specify an input data set, a total sample size, and 

an index variable.  Since each person is their own cluster, the macro does not need the user to 

specify the number of clusters in the dataset, the user does need to specify the weight variable.  

This weight variable is supplied to the user in the original NHANES dataset, also a jackknife 
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weight must be specified, and in this case the jackknife weight will always be equal to .999.  And 

finally the user must specify the response variable to be used in the logistic regression analysis.  

In this case the response variable will be each of the four hormones of interest (TSH, LH, FSH, 

and T4).  A survey logistic regression is applied to the original dataset using the sum of the 

furans and menopause status to predict abnormally high levels of the hormone.   An AUC 

estimate is obtained from the logistic regression, which will be called the full AUC.  A pseudo 

dataset is then created by removing one observation from the original dataset.  Once an 

observation is removed the macro then reweights all other observations in the dataset by a factor 

of 
1

n
n −

where n is the total sample size ( )1041n = , since each individual is their own cluster.  

Once the pseudo dataset is created a logistic regression is run to predict abnormally high levels 

of hormones from exposure to furans and menopause status.  From the logistic regression an 

estimate of the AUC is obtained.  This process is repeated until each observation has been 

removed.  The AUC estimate and variance estimate is obtained the same as with the simulated 

data.  The next section will discuss the results found in these analyses for each of the four 

reproductive hormones. 
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3.2.3 NHANES Results 

The purpose of applying the bootstrap and jackknife variance estimation techniques to the 

NHANES was to determine first if there was a relationship between exposure to certain furans 

and abnormally high levels of certain hormones and second to see if the results of the simulated 

data study are consistent when applied to real data.   

A logistic regression analysis was conducted to determine whether there is an association 

between each of four hormone levels and increased exposure to furans.  The specific hormones 

and furans of interest have previously been described.  Because menopause status in women is 

known to affect these hormone levels it was also included in the analysis.  If exposure to furans 

does in fact affect the level of hormones, the AUC estimate is expected to be greater than .50.  

An AUC of .50 is considered to represent chance.  Table 2 below provides the AUC estimates, 

their variances, and 95% confidence intervals for each hormone using both the bootstrap and 

jackknife methods.   

Table 2: NHANES Results 

   95% Confidence Interval 

Hormone Estimate Variance Bootstrap Jackknife 

 Bootstrap Jackknife Bootstrap  Jackknife Lower Upper Lower Upper 

FSH 0.6049 0.5849 0.0035 0.0006 0.6013 0.6085 0.5834 0.5864 

LH 0.5700 0.5208 0.0027 0.0015 0.5669 0.5732 0.5184 0.5232 

TSH 0.5877 0.5879 0.0024 0.0005 0.5847 0.5907 0.5865 0.5892 

T4 0.6297 0.6131 0.0036 0.0015 0.6260 0.6334 0.6107 0.6154 
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As can be seen in Table 2, a logistic regression of FSH and exposure to furans, adjusting 

for menopause status yields an AUC estimate higher than 0.5 using both the jackknife and 

bootstrap techniques.   The bootstrap technique provided an AUC estimate of .605 with a 95% 

confidence interval from .601 to .608.  The jackknife technique provided an AUC estimate of 

.585 with a 95% confidence interval from .583 to .586.  These results would seem to suggest that 

exposure to certain furans is helpful in predicting abnormally high levels of FSH when 

controlling for menopause status.   

A logistic regression of LH and exposure to furans, adjusting for menopause status yields 

an AUC estimate higher than 0.5 using both the bootstrap and jackknife techniques.  The 

bootstrap technique provided an AUC estimate of .57 with a 95% confidence interval ranging 

from .567 to .573.  The jackknife technique provided an AUC estimate of .521 with a 95% 

confidence interval ranging from .518 to .523.   Although these results are statistically significant 

it is unclear whether they are clinically significant.   

 For TSH, the logistic regression provided an AUC greater than 0.5 for both methods.  

The bootstrap method provided an AUC estimate of .588 with a 95% confidence interval from 

.585 to .591.  The jackknife technique provided an AUC estimate of .588 as well with a 95% 

confidence interval from .587 to .589.  These results would seem to suggest that exposure to 

certain furans is helpful in predicting abnormally high levels of TSH when controlling for 

menopause status.  

 Finally for T4, the logistic regression again provided AUC estimates greater than 0.5 for 

both the bootstrap and jackknife techniques.  The bootstrap technique provided an AUC estimate 
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of .630 with a 95% confidence interval from .6261 to .633.  The jackknife technique provided an 

AUC estimate of .613 with a 95% confidence interval from .611 to .615.  These results would 

seem to suggest that exposure to certain furans is helpful in predicting abnormally high levels of 

T4 when controlling for menopause status.   

It is now of interest to determine if the results of the simulated data study are consistent 

with the results seen in the analysis of the NHANES data.  For the simulated data study, the 

jackknife and bootstrap AUC estimates were found to have similar bias.  However, as can be 

seen in Figure 6 below, in the NHANES study the jackknife method provides AUC estimates 

generally less than those provided by the bootstrap method.   

 

Figure 9: NHANES AUC Estimates vs. Hormones 

 

Overall the estimates are close, but for LH the difference between the jackknife and 

bootstrap AUC estimates is noticeable.  In the simulated study the bootstrap variance estimates 

Legend 

1 – FSH   3 ‐ TSH 

2 – LH    4 – T4 
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were found to be consistently less than those provided by the jackknife variance estimation 

technique.  When examining the variance estimates of the NHANES study, the jackknife 

variances are consistently smaller than the bootstrap variances.  This may be a result of the 

jackknife weights.  Since each person served as their own cluster in the NHANES study the 

jackknife weight was essentially equal to one.  In contrast the jackknife weight in the simulated 

study ranged from almost 2 to almost 7.  This may explain the differences between the two 

studies.  In summary, with the exception of LH, both the bootstrap and jackknife methods 

provided similar AUC estimates for each hormone with jackknife providing smaller variance 

estimates.  
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3.2.4 NHANES Conclusions 

In conclusion, AUC estimates for all four hormones would suggest that exposure to 

furans affect abnormal levels of hormones more than expected by chance.  It appears that 

exposure to furans does indeed have an effect on hormones in women.  This result would suggest 

that the US population is being exposed to harmful chemicals in the environment that may be 

affecting hormone levels.  According to the results the ten furans proved to be most predictive 

when predicting abnormally high levels of T4, while adjusting for menopause status in women.  

This may suggest that these furans have an impact on T4 hormone levels and may lead to 

metabolic health issues in women.
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4 Discussion and Future Work 
 

In comparison of the jackknife and bootstrap variance estimation techniques, the 

simulated data study would suggest that the bootstrap technique provides better variance 

estimates when working with one stage cluster sample data.  However when these 

methods were applied to the NHANES study which is structured as a one-stage cluster 

sample, the jackknife technique provided smaller variance estimates.  Future work in this 

area would include further analysis of the jackknife weighting variable used to calculate 

the variance.  This weight seems to have a great effect on the variance estimates.  It 

would be of interest to study how these methods compare when equal variance among the 

population distributions is not assumed, as was done in the simulated study.  Also it 

would be of interest to compare the bootstrap and jackknife techniques to the widely used 

linearization technique.  

 Although the results of the two studies seem to disagree, the simulation was able 

to explain how certain characteristics of a dataset affect both of these methods.  It was 

determined that for both methods, bootstrap and jackknife, the rarer a condition is in the 

population the higher the variance estimate will be.  Also for both techniques as the AUC 

estimate increases, the test is doing a better job of correctly predicting the condition, the 

variance estimate decreases.  Also for the bootstrap, as the number of clusters sampled 

increases, variance decreases. 
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Results of the logistic regression analysis of reproductive and thyroid hormones 

based on exposure to furans found evidence that the US population’s exposure to 

chemicals in its environment may be leading to abnormally high hormone levels. This 

result was most strong when looking at Thyroxine. Future work in this area would 

include expanding the analysis of these furans and other harmful chemicals to include 

children and men.  Also it may be of interest in the future to explore other furans and 

chemicals present in the environment for their effect on reproductive and thyroid 

hormones, as well as other hormone levels not considered here. 
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APPENDIX 

Simulation Macro for Bootstrap 

 

libname thesis 'E:\Thesis\Simulation'; 
%include 'E:\Thesis\Simulation\bootstrap macro sim2.sas'; 
options nonotes; (Mukhopadhyay) 
 
 
/*Sample Size 200*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
 
data thesis.Final_Bootstrap_200; 
 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 
 prevalence=0; 
 number_of_clusters=0; 
run; 
 
%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
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data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
run; 
proc sort data=clusters; 
 by cluster; 
run; 
 
proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
 by cluster; 
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run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%boot(data=sample_&m,reps=800,i=i, strata=cluster, n=200); 
 
%if &m = 1 %then %do; 
   data variance; 
    set variance_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = variance  
    data = variance_&m force; 
   run; 
  %end; 
 %end; 
 data thesis.case_&case; 
  set variance; 
 run; 
 
 proc univariate data= variance; 
  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
 
 data final; 
  set Final; 
  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
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  number_of_clusters = &sampclusters; 
 run; 
 
%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Bootstrap_200 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=2, case=1); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=2, case=2); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=2, case=3); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=2, case=4); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=2, case=5); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=2, case=6); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=2, case=7); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=2, case=8); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=2, case=9); 
 
/*Sample Size 500*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
 
data thesis.Final_Bootstrap_500; 
 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 



www.manaraa.com

72 
 

 

 prevalence=0; 
 number_of_clusters=0; 
run; 
 
%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
 
data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
run; 
proc sort data=clusters; 
 by cluster; 
run; 
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proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
 by cluster; 
run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%boot(data=sample_&m,reps=800,i=i, strata=cluster, n=500); 
 
%if &m = 1 %then %do; 
   data variance; 
    set variance_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = variance  
    data = variance_&m force; 
   run; 
  %end; 
 %end; 
 
 data thesis.case_&case; 
  set variance; 
 run; 
 
 proc univariate data= variance; 
  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
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 data final; 
  set Final; 
  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
  number_of_clusters = &sampclusters; 
 run; 
 
%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Bootstrap_500 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=5, case=10); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=5, case=11); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=5, case=12); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=5, case=13); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=5, case=14); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=5, case=15); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=5, case=16); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=5, case=17); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=5, case=18); 
 
/*Sample Size 700*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
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data thesis.Final_Bootstrap_700; 
 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 
 prevalence=0; 
 number_of_clusters=0; 
run; 
 
%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
 
data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
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run; 
proc sort data=clusters; 
 by cluster; 
run; 
 
proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
 by cluster; 
run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%boot(data=sample_&m,reps=800,i=i, strata=cluster, n=700); 
 
%if &m = 1 %then %do; 
   data variance; 
    set variance_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = variance  
    data = variance_&m force; 
   run; 
  %end; 
 %end; 
 
 data thesis.case_&case; 
  set variance; 
 run; 
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 proc univariate data= variance; 
  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
 
 data final; 
  set Final; 
  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
  number_of_clusters = &sampclusters; 
 run; 
 
%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Bootstrap_700 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=7, case=19); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=7, case=20); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=7, case=21); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=7, case=22); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=7, case=23); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=7, case=24); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=7, case=25); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=7, case=26); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=7, case=27); 
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Simulation for Jaccknife 

 
 
libname thesis 'E:\Thesis\Simulation'; 
%include 'E:\Thesis\Simulation\jacknife_weight_sim2.sas'; 
options nonotes; 
 
 
/*Sample Size 200*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
 
data thesis.Final_Jacknife_200; 
 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 
 prevalence=0; 
 number_of_clusters=0; 
run; 
 
%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
 
data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
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 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
run; 
proc sort data=clusters; 
 by cluster; 
run; 
 
proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
 by cluster; 
run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
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 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%jacknife_m2(strata = cluster,  s = s, id = id, nh=100, totaln=200, data = 
work.sample_&m, obs=id, weight=sampwt, jack=1.98); 
 
%if &m = 1 %then %do; 
   data var; 
    set var_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = var  
    data = var_&m force; 
   run; 
  %end; 
 %end; 
  
 data thesis.jackcase_&case; 
  set var; 
 run; 
 
 proc univariate data= var; 
  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
 
 data final; 
  set Final; 
  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
  number_of_clusters = &sampclusters; 
 run; 
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%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Jacknife_200 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=2, case=1); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=2, case=2); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=2, case=3); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=2, case=4); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=2, case=5); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=2, case=6); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=2, case=7); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=2, case=8); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=2, case=9); 
 
/*Sample Size 500*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
 
data thesis.Final_Jacknife_500; 
 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 
 prevalence=0; 
 number_of_clusters=0; 
run; 
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%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
 
data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
run; 
proc sort data=clusters; 
 by cluster; 
run; 
 
proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
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 by cluster; 
run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%jacknife_m2(strata = cluster,  s = s, id = id, nh=100, totaln=500, data = 
work.sample_&m, obs=id, weight=sampwt, jack=4.95); 
 
%if &m = 1 %then %do; 
   data var; 
    set var_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = var  
    data = var_&m force; 
   run; 
  %end; 
 %end; 
  
 data thesis.jackcase_&case; 
  set var; 
 run; 
 
 proc univariate data= var; 
  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
 
 data final; 
  set Final; 
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  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
  number_of_clusters = &sampclusters; 
 run; 
 
%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Jacknife_500 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=5, case=10); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=5, case=11); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=5, case=12); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=5, case=13); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=5, case=14); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=5, case=15); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=5, case=16); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=5, case=17); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=5, case=18); 
 
/*Sample Size 700*/ 
data numbers; 
 input cluster; 
 datalines; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
; 
run; 
 
data thesis.Final_Jacknife_700; 
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 AUC_Estimate = 0; 
 SE_AUC=0; 
 Var_AUC=0; 
 prevalence=0; 
 number_of_clusters=0; 
run; 
 
%macro simulation(ndpopsize,area,b, numclusters, sampclusters, case); 
 
data nd; 
 %do j= 1 %to &ndpopsize; 
 z = rand('normal', 0, 1); 
 c = 0; 
 output; 
 %end; 
run; 
 
data d; 
 cv=quantile('normal',&area); 
 a1 = sqrt(1 + (&b)**2)*cv; 
 sd= 1/&b; 
 mud=a1*sd; 
 %do j= &ndpopsize+1 %to 1000; 
 z = rand('normal',mud, sd);  
 c = 1; 
 output; 
 %end; 
run; 
 
data pop; 
 set nd d; 
run; 
proc print data=pop; 
run; 
 
%do m=1 %to 100; 
proc surveyselect data=pop method=srs n=100 reps=&numclusters out=clusters; 
run; 
data clusters; 
 set clusters; 
 cluster = replicate; 
run; 
proc sort data=clusters; 



www.manaraa.com

86 
 

 

 by cluster; 
run; 
 
proc surveyselect data=numbers method=srs n=&sampclusters out=new; 
run; 
proc sort data=new; 
 by cluster; 
run; 
data sample; 
 merge clusters(in=a) new(in=b); 
 by cluster; 
 if a and b ; 
 s = &sampclusters; 
 sampwt=&numclusters/&sampclusters; 
 drop replicate cv a1 sd mud; 
run; 
data sample_&m; 
 set sample; 
  id=_n_; 
  true_area = &area; 
run; 
 
%jacknife_m2(strata = cluster,  s = s, id = id, nh=100, totaln=700, data = 
work.sample_&m, obs=id, weight=sampwt, jack=6.93); 
 
%if &m = 1 %then %do; 
   data var; 
    set var_&m; 
   run; 
  %end; 
 
  %if &m ^= 1 %then %do; 
   proc append base = var  
    data = var_&m force; 
   run; 
  %end; 
 %end; 
 
 data thesis.jackcase_&case; 
  set var; 
 run; 
 
 proc univariate data= var; 
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  var meanAUC; 
  output out=Final mean=AUC_Estimate stdmean=SE_AUC; 
 run; 
 
 data final; 
  set Final; 
  Var_AUC = SE_AUC**2; 
  *true_area = &area; 
  prevalence = &ndpopsize/10; 
  number_of_clusters = &sampclusters; 
 run; 
 
%stack(data=final); 
%mend; 
 
%macro stack(data); 
 proc append base = thesis.Final_Jacknife_700 
  data = &data force; 
 run; 
%mend; 
 
%simulation(ndpopsize=500,area=.90,b=1,numclusters=10,sampclusters=7, case=19); 
%simulation(ndpopsize=700,area=.90,b=1,numclusters=10,sampclusters=7, case=20); 
%simulation(ndpopsize=900,area=.90,b=1,numclusters=10,sampclusters=7, case=21); 
%simulation(ndpopsize=500,area=.75,b=1,numclusters=10,sampclusters=7, case=22); 
%simulation(ndpopsize=700,area=.75,b=1,numclusters=10,sampclusters=7, case=23); 
%simulation(ndpopsize=900,area=.75,b=1,numclusters=10,sampclusters=7, case=24); 
%simulation(ndpopsize=500,area=.60,b=1,numclusters=10,sampclusters=7, case=25); 
%simulation(ndpopsize=700,area=.60,b=1,numclusters=10,sampclusters=7, case=26); 
%simulation(ndpopsize=900,area=.60,b=1,numclusters=10,sampclusters=7, case=27); 
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Bootstrap Macro for Simulated Data  

 
 
%macro boot(data, reps, i, strata,n); 
 
 %do &i = 1 %to &reps %by 1; 
  proc surveyselect data=&data method=urs sampsize=&n  seed=&i   
  out=samp&i outhits outseed;        
   
  proc surveylogistic data=samp&i; 
   model c (descending) = z;  
   output out = outp p=phat; 
   strata &strata; 
   ods output association = assoc&i; 
  run; 
 
  data _null_; 
   set assoc&i; 
   if label2 = "c" then call symput ("area", cvalue2); 
  run; 
 
  data bootstrap&i;  
   set assoc&i; 
   AUC = &area; 
   if label2 = "c"; 
   keep AUC;   
  run; 
  %if &i = 1 %then %do; 
   data bootstrap; 
    set bootstrap&i; 
   run; 
  %end; 
 
  %if &i ^= 1 %then %do; 
   proc append base = bootstrap  
    data = bootstrap&i force; 
   run; 
  %end; 
 %end; 
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 proc univariate data = bootstrap; 
  var AUC; 
  output out = variance_&m var=varAUC mean=meanAUC; 
 run; 
 %mend; 



www.manaraa.com

90 
 

 

 

Jackknife Macro for Simulated Data  

 
 
%macro jacknife_m2 (strata,  s, id, nh, totaln, data, obs, weight, jack); 
proc surveylogistic data = &data;        
 model c (descending) = z; 
 weight &weight; 
 ods output association = assoc;   
run; 
 
data _null_;        
 set assoc; 
 if label2 = "c" then call symput ("full", cvalue2); 
run; 
 
%do &id = 1 %to &totaln;       
  data clus ; 
   set &data; 
   if id=&id then call symput('cluster',cluster); 
  run; 
  
  data test; 
   set &data; 
   if (cluster = &cluster and &obs ^= &id) then   
   wt = &weight*(&nh/(&nh-1)); 
   if (cluster ^= &cluster) then  
   wt = &weight; 
   if (&obs = &id and cluster= &cluster) then  
   wt = .; 
  run; 
 
   proc surveylogistic data = test;     
    model c (descending) = z; 
    weight wt; 
    ods output association = assoc&id;    
   run; 
 
   data _null_;        
    set assoc&id; 
    if label2 = "c" then call symput("area", cvalue2); 
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   run; 
 
    data jacknife&id;       
     set assoc&id; 
     keep AUC cluster id;     
     AUC = &area; 
     cluster = &cluster; 
     id = &id; 
     if label2 = "c" ; 
    run; 
 
    %if &id=1 %then %do; 
     Data jacknife; 
      set jacknife&id; 
     run; 
    %end; 
 
    %if &id ^= 1 %then %do; 
     proc append base = jacknife  
      data= jacknife&id force; 
     run;        
    %end; 
    
  %end; 
  
 data diff; 
  set jacknife; 
  diff = (AUC - &full)*(AUC - &full); 
 run; 
 
 proc univariate data = diff; 
  var diff; 
  output out = varAUC  sum=sumdiff; 
 run; 
  
 proc univariate data = jacknife; 
  var AUC; 
  output out = estAUC mean=meanAUC; 
 run; 
  
 data varAUC; 
  set varAUC; 
  var=&jack*sumdiff; 
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  keep var; 
 run; 
  
 data estAUC; 
  set estAUC; 
  keep meanAUC; 
 run; 
 data var_&m; 
  merge varAUC estAUC; 
 run; 
%mend; 
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Jackknife Macro for NHANES Data 

 
 
libname a 'C:\Documents and Settings\amdunning\My Documents\Thesis'; 
ods  association; 
 
%macro jacknife_m2 (id, totaln, data, obs, weight, jack, hormone); 
proc surveylogistic data = &data;   
 model &hormone (descending) = sum meno; 
 weight &weight; 
 ods output association = assoc; 
  
run; 
 
data _null_;           
 set assoc; 
 if label2 = "c" then call symput ("full", cvalue2); 
run; 
  
 %do &id = 1 %to &totaln;        
 
  data clus ; 
   set &data; 
   if id=&id then call symput('cluster',cluster); 
  run; 
 
  data test; 
   set &data; 
   where id ^= &id; 
   wt = &weight*(&totaln/(&totaln-1)); 
  run; 
 
 
   proc surveylogistic data = test;  
    model &hormone (descending) = sum meno; 
    weight wt; 
    ods output association = assoc&id;    
   run; 
 
   data _null_;        
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    set assoc&id; 
    if label2 = "c" then call symput("area", cvalue2); 
   run; 
   
    
   data jacknife&id;       
    set assoc&id; 
    keep AUC id;       
   AUC = &area; 
    id = &id; 
    if label2 = "c" ; 
   run; 
 
     
   %if &id=1 %then %do; 
    data jacknife; 
    set jacknife&id; 
   run; 
   
  %end; 
 
   %if &Id ^= 1 %then %do; 
    proc append base = jacknife  
     data= jacknife&id force; 
    run;        
   %end;    
  %end; 
 
 data diff; 
  set jacknife;    
  diff = (AUC - &full)*(AUC - &full); 
 run; 
 
 proc univariate data = diff; 
  var diff; 
  output out = varAUC  sum=sumdiff; 
 run; 
  
 proc univariate data = jacknife; 
  var AUC; 
  output out = estAUC mean=meanAUC; 
 run; 
  



www.manaraa.com

95 
 

 

 data varAUC; 
  set varAUC; 
  var = &jack*sumdiff; 
  keep var; 
 run; 
  
 data estAUC; 
  set estAUC; 
  keep meanAUC; 
 run; 
  
 data var_&hormone; 
  set varAUC estAUC; 
 run; 
%mend; 
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Bootstrap Macro for NHANES Data 

 
 
%macro boot(data, n, reps, i, hormone, wt); 
 %do &i = 1 %to &reps %by 1; 
  proc surveyselect data=&data method=urs sampsize=&n seed=&i   
 out=samp&i outhits outseed;        
   
  proc surveylogistic data=samp&i; 
   model &hormone (descending) = sum meno;  
   output out = outp p=phat; 
   weight &wt; 
   ods output association = assoc&i;  
  run; 
 
  data _null_; 
   set assoc&i; 
   if label2 = "c" then call symput ("area", cvalue2); 
  run; 
 
  data bootstrap&i;  
   set assoc&i; 
   AUC = &area; 
   if label2 = "c"; 
   keep AUC;   
  run; 
 
  %if &i = 1 %then %do; 
   data bootstrap_&hormone; 
    set bootstrap&i; 
   run; 
  %end; 
 
  %if &i ^= 1 %then %do; 
   proc append base = bootstrap_&hormone  
    data = bootstrap&i force; 
   run; 
  %end; 
 %end; 
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 proc univariate data = bootstrap_&hormone; 
  var AUC; 
  output out = variance_&hormone var=varAUC mean=meanAUC; 
 run; 
 
 %mend; 
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3-way block ANOVA (original scale) 

 
 
Response Bootstrap Variance 
 
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 105 0.00157508 0.000015 61.6915 
Error 2594 0.00063075 2.432e-7 Prob > F 
C. Total 2699 0.00220584 0.0000* 
 
 
Effect Tests 
Source Nparm DF Sum of 

Squares
F Ratio Prob > F   

prev 2 2 0.00055523 1141.704 0.0000*  
area 2 2 0.00034855 716.7059 <.0001*  
clusters 2 2 0.00065783 1352.684 0.0000*  
rep 99 99 0.00001348 0.5598 0.9999  
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Prevalence of Diseaase 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
0.1 0.00159774  0.00001644 0.001598
0.3 0.00069639  0.00001644 0.000696
0.5 0.00058487  0.00001644 0.000585
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level    Least Sq Mean
0.1 A     0.00159774
0.3   B   0.00069639
0.5     C 0.00058487
 
Levels not connected by same letter are significantly different. 
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True AUC 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
0.6 0.00133689  0.00001644 0.001337
0.75 0.00106587  0.00001644 0.001066
0.9 0.00047624  0.00001644 0.000476
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level    Least Sq Mean
0.6 A     0.00133689
0.75   B   0.00106587
0.9     C 0.00047624
 
Levels not connected by same letter are significantly different. 
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Number of Clusters Sampled 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
2 0.00164813  0.00001644 0.001648
5 0.00071532  0.00001644 0.000715
7 0.00051555  0.00001644 0.000516
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level    Least Sq Mean
2 A     0.00164813
5   B   0.00071532
7     C 0.00051555
 
Levels not connected by same letter are significantly different. 
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Response Jackknife Variance 
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 105 0.4188529 0.003989 1.8173 
Error 2594 5.6939172 0.002195 Prob > F 
C. Total 2699 6.1127702 <.0001* 
 
 
Effect Tests 
Source Nparm DF Sum of 

Squares
F Ratio Prob > F   

prev 2 2 0.08689585 19.7937 <.0001*  
area 2 2 0.10841013 24.6944 <.0001*  
clusters 2 2 0.03000140 6.8339 0.0011*  
rep 99 99 0.19354555 0.8906 0.7704  
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Prevalence of Disease 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
0.1 0.01580341  0.00156171 0.015803
0.3 0.00367829  0.00156171 0.003678
0.5 0.00386187  0.00156171 0.003862
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level   Least Sq Mean 
0.1 A   0.01580341 
0.5   B 0.00386187 
0.3   B 0.00367829 
 
Levels not connected by same letter are significantly different. 
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True AUC 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
0.6 0.01661686  0.00156171 0.016617
0.75 0.00465798  0.00156171 0.004658
0.9 0.00206873  0.00156171 0.002069
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level   Least Sq Mean 
0.6 A   0.01661686 
0.75   B 0.00465798 
0.9   B 0.00206873 
 
Levels not connected by same letter are significantly different. 
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Number of Clusters Sampled 
 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
2 0.01249355  0.00156171 0.012494
5 0.00531231  0.00156171 0.005312
7 0.00553772  0.00156171 0.005538
 
LS Means Plot 
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LSMeans Differences Tukey HSD 
α=0.050   Q=2.34505 
 
Level   Least Sq Mean 
2 A   0.01249355 
7   B 0.00553772 
5   B 0.00531231 
 
Levels not connected by same letter are significantly different. 
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Case True AUC Prevalenc Clusters Bootstrap Jackknife Bootstrap Jackknife 
1 0.9 0.5 2 0.90 0.90 0.0010 0.0005
2 0.9 0.3 2 0.90 0.89 0.0011 0.0006
3 0.9 0.1 2 0.91 0.88 0.0025 0.0017
4 0.75 0.5 2 0.72 0.76 0.0026 0.0011
5 0.75 0.3 2 0.77 0.79 0.0026 0.0012
6 0.75 0.1 2 0.73 0.79 0.0082 0.0027
7 0.6 0.5 2 0.59 0.62 0.0060 0.0015
8 0.6 0.3 2 0.58 0.63 0.0094 0.0018
9 0.6 0.1 2 0.55 0.64 0.0790 0.0037
10 0.9 0.5 5 0.90 0.90 0.0014 0.0002
11 0.9 0.3 5 0.90 0.89 0.0016 0.0002
12 0.9 0.1 5 0.88 0.92 0.0042 0.0003
13 0.75 0.5 5 0.74 0.76 0.0028 0.0005
14 0.75 0.3 5 0.76 0.71 0.0032 0.0006
15 0.75 0.1 5 0.79 0.70 0.0077 0.0016
16 0.6 0.5 5 0.61 0.59 0.0038 0.0006
17 0.6 0.3 5 0.60 0.60 0.0048 0.0007
18 0.6 0.1 5 0.61 0.63 0.0182 0.0016
19 0.9 0.5 7 0.92 0.88 0.0014 0.0001
20 0.9 0.3 7 0.88 0.89 0.0020 0.0002
21 0.9 0.1 7 0.89 0.90 0.0034 0.0004
22 0.75 0.5 7 0.73 0.75 0.0035 0.0003
23 0.75 0.3 7 0.74 0.75 0.0037 0.0004
24 0.75 0.1 7 0.77 0.73 0.0075 0.0012
25 0.6 0.5 7 0.55 0.60 0.0121 0.0004
26 0.6 0.3 7 0.65 0.55 0.0046 0.0005
27 0.6 0.1 7 0.64 0.59 0.0115 0.0011

AUC Estimates Variance Estimates
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